TECHNISCHE UNIVERSITÄT
Faculty of Mathematics Applied Functional Analysis CHEMNITZ Michael Quellmalz \& Ralf Hielscher

Reconstruction of Functions on the Sphere from Spherical Means

Vertical slice transform

Definition:

$$
\begin{aligned}
& \mathcal{T}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow L^{2}([0,2 \pi) \times[-1,1]), \\
& \mathcal{T} f(\sigma, t)=\frac{1}{2 \pi \sqrt{1-t^{2}}} \int_{\boldsymbol{\xi} \cdot \boldsymbol{e}_{\sigma}=t} f(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi},
\end{aligned}
$$

where

$$
\boldsymbol{e}_{\sigma}=(\cos \sigma, \sin \sigma, 0)^{\top}
$$

Symmetry property

$\mathcal{T} f$ vanishes for functions f that are odd in the third coordinate ξ_{3}. Hence, only the even part of f can be reconstructed.

Task

We have the discrete noisy data
$g\left(\sigma_{m}, t_{m}\right)=\mathcal{T} f\left(\sigma_{m}, t_{m}\right)+\varepsilon_{m}, \quad m=1, \ldots, M$, where ε is a Gaussian random vector.
We want to reconstruct f.

Methods

Singular value decomposition

$$
\mathcal{T} Y_{n}^{k}=\lambda_{n}^{k} B_{n}^{k}, \quad n \in \mathbb{N}_{0},|k| \leq n
$$

- $Y_{n}^{k} \ldots$ spherical harmonics of degree n
- $\lambda_{n}^{k} \ldots$ singular values of \mathcal{T}
- $B_{n}^{k} \ldots$ orthonormal basis on $[0,2 \pi) \times[-1,1]$

Smoothing the inverse $\mathcal{T}^{\dagger} g$ with filter coefficients $\hat{\psi}(n)$

$$
\begin{aligned}
\mathcal{T}^{\dagger} g & =\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \frac{1}{\lambda_{n}^{k}}\left\langle g, B_{n}^{k}\right\rangle Y_{n}^{k} \\
\rightsquigarrow \psi \star \mathcal{T}^{\dagger} g & =\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{\psi}(n) \frac{1}{\lambda_{n}^{k}}\left\langle g, B_{n}^{k}\right\rangle Y_{n}^{k} .
\end{aligned}
$$

Use numerical quadrature for the discretized inner product

$$
\left\langle g, B_{n}^{k}\right\rangle_{M}=\sum_{m=1}^{M} \omega_{m} g\left(\sigma_{m}, t_{m}\right) \overline{B_{n}^{k}\left(\sigma_{m}, t_{m}\right)}
$$

Truncation at degree N to define the estimator

$$
\mathcal{E}_{M, \psi} g=\sum_{n=0}^{N} \sum_{k=-n}^{n} \hat{\psi}(n) \frac{1}{\lambda_{n}^{k}}\left\langle g, B_{n}^{k}\right\rangle_{M} Y_{n}^{k}
$$

Choice of the filter coefficients

The filter coefficients $\hat{\psi}(n)$ should be

- almost one for small n, and
- zero for large n.

CuP filter
de la Vallée-Poussin filter

Results

Source condition. We assume that f is in the Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ with bounded norm

$$
\|f\|_{H^{s}\left(\mathbb{S}^{2}\right)} \leq S
$$

Theorem. There exists a family of optimal filters $\psi_{L(M)}^{s}$ such that for $M \rightarrow \infty$

$$
\begin{aligned}
& \min _{\psi} \max _{\|f\|_{H^{s} \leq S} \leq} \mathbb{E}\left\|f-\mathcal{E}_{M, \psi} g\right\|_{2}^{2} \\
& \simeq \max _{\|f\|_{H^{s} \leq S} \leq} \mathbb{E}\left\|f-\mathcal{E}_{M, \psi_{L(M)}^{s}} g\right\|_{2}^{2} \\
& \simeq \text { const } \cdot M^{\frac{-2 s}{2 s+3}}
\end{aligned}
$$

They have the coefficients

for $n \leq L$.
optimal filter coefficients

Orthogonal projection along the third coordinate turns the circular average transform \mathcal{T} into the Radon transform \mathcal{R} on the unit disc via

$$
\mathcal{T} f=\mathcal{R}\left[\frac{f\left(\xi_{1}, \xi_{2}\right)}{\pi \sqrt{1-\xi_{1}^{2}-\xi_{2}^{2}}}\right]
$$

provided f is even in ξ_{3} and thus independent of ξ_{3}.

Numerical experiments

The computation of the estimator $\mathcal{E}_{M, \psi} g$ can be done with the help of the fast spherical Fourier transform in only $\mathcal{O}\left(M \log ^{2} M\right)$ steps.

Conclusion

We have introduced a new algorithm for inverting the vertical slice transform. We discovered that the filter coefficients of the type ψ_{L}^{s} are optimal. Our error estimates were confirmed in numerical tests.

References

S. Gindikin J. Reeds, and L. Shepp

Spherical tomography and spherical integral geometry.
In E. T. Quinto, M. Cheney, and P. Kuchment, Eds., Tomography, Impedance Imaging, and Integral Geometry, Vol. 30 of Lectures in Appl. Math., pp. 83 -92, 1994.

G. Zangerl and 0 . Scherzer.

Exact reconstruction in photoacoustic tomography with circular
integrating detectors II: Spherical geometry.
Math. Methods Appl. Sci., 33(15):1771 - 1782, 2010
R. Hielscher and M. Quellmalz.

Optimal mollifiers for spherical deconvolution.
Inverse Problems 31 (2015) 085001
R. Hielscher and M. Quellmalz.

Reconstructing a function on the sphere from its means along vertica slices
Preprint 2015-08 of the Faculty of Mathematics, TU Chemnitz, 2015.

Contact

Michael Quellmalz
tu-chemnitz.de/~qmi

Ralf Hielscher tu-chemnitz.de/~rahi

