

TECHNISCHE UNIVERSITÄT CHEMNITZ

Faculty of Mathematics **Applied Functional Analysis** Michael Quellmalz & Ralf Hielscher

Reconstruction of Functions on the Sphere from Spherical Means

Vertical slice transform

Definition:

Choice of the filter coefficients

The filter coefficients $\hat{\psi}(n)$ should be

Numerical experiments

The computation of the estimator $\mathcal{E}_{M,\psi}g$ can be

 $\mathcal{T}: L^2(\mathbb{S}^2) \to L^2\left([0, 2\pi) \times [-1, 1]\right),$ $\mathcal{T}f(\sigma,t) = \frac{1}{2\pi\sqrt{1-t^2}} \int_{\boldsymbol{\xi}\cdot\boldsymbol{e}_{\sigma}=t} f(\boldsymbol{\xi}) \,\mathrm{d}\boldsymbol{\xi},$

where

 $\boldsymbol{e}_{\sigma} = (\cos \sigma, \sin \sigma, 0)^{\top}.$

Symmetry property

- almost one for small n, and
- \blacktriangleright zero for large n.

Results

Source condition. We assume that *f* is in the Sobolev space $H^{s}(\mathbb{S}^{2})$ with bounded norm

 $\|f\|_{H^s(\mathbb{S}^2)} \le S.$

Theorem. There exists a family of optimal filters

done with the help of the fast spherical Fourier transform in only $\mathcal{O}(M \log^2 M)$ steps.

1024 16 32 512 128 256 64

 $\mathcal{T}f$ vanishes for functions f that are odd in the third coordinate ξ_3 . Hence, only the even part of f can be reconstructed.

Task

We have the discrete noisy data $g(\sigma_m, t_m) = \mathcal{T}f(\sigma_m, t_m) + \varepsilon_m, \quad m = 1, \ldots, M,$ where ε is a Gaussian random vector. We want to reconstruct f.

Methods

Singular value decomposition

 $\mathcal{T}Y_n^k = \lambda_n^k B_n^k, \quad n \in \mathbb{N}_0, \ |k| \le n.$

- \blacktriangleright Y_n^k ... spherical harmonics of degree n
- \triangleright λ_n^k ... singular values of \mathcal{T}

 \triangleright B_n^k ... orthonormal basis on $[0, 2\pi) \times [-1, 1]$ **Smoothing** the inverse $\mathcal{T}^{\dagger}g$ with filter

 $\psi^s_{L(M)}$ such that for $M \to \infty$ $\min_{\psi} \max_{\|f\|_{H^s} \leq S} \mathbb{E} \|f - \mathcal{E}_{M,\psi}g\|_2^2$ $\simeq \max_{\|f\|_{H^s} \le S} \mathbb{E} \|f - \mathcal{E}_{M,\psi^s_{L(M)}}g\|_2^2$ $\simeq \operatorname{const} \cdot M^{\frac{-2s}{2s+3}}.$

Alternative reconstruction approach

Conclusion

We have introduced a new algorithm for inverting the vertical slice transform. We discovered that the filter coefficients of the type ψ_L^s are optimal. Our error estimates were confirmed in numerical tests.

References

S. Gindikin, J. Reeds, and L. Shepp. Spherical tomography and spherical integral geometry. In E. T. Quinto, M. Cheney, and P. Kuchment, Eds., *Tomography*, Impedance Imaging, and Integral Geometry, Vol. 30 of Lectures in Appl.

Use **numerical quadrature** for the discretized inner product

$$\left\langle g, B_n^k \right\rangle_M = \sum_{m=1}^M \omega_m g(\sigma_m, t_m) \overline{B_n^k(\sigma_m, t_m)}.$$

Truncation at degree N to define the estimator

$$\mathcal{E}_{M,\psi}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \hat{\psi}(n) \frac{1}{\lambda_n^k} \left\langle g, B_n^k \right\rangle_M Y_n^k$$

Orthogonal projection along the third coordinate turns the circular average transform \mathcal{T} into the Radon transform \mathcal{R} on the unit disc via

$$\mathcal{T}f = \mathcal{R}\left[\frac{f\left(\xi_{1},\xi_{2}\right)}{\pi\sqrt{1-\xi_{1}^{2}-\xi_{2}^{2}}}\right],$$

provided f is even in ξ_3 and thus independent of ξ_3 .

Math., pp. 83 – 92, 1994.

G. Zangerl and O. Scherzer.

Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry. *Math. Methods Appl. Sci.*, 33(15):1771 – 1782, 2010.

R. Hielscher and M. Quellmalz. Optimal mollifiers for spherical deconvolution. Inverse Problems 31 (2015) 085001.

R. Hielscher and M. Quellmalz.

Reconstructing a function on the sphere from its means along vertical slices.

Preprint 2015-08 of the Faculty of Mathematics, TU Chemnitz, 2015.

Contact

Ralf Hielscher

tu-chemnitz.de/~rahi